Spatial parcellations, spectral filtering, and connectivity measures in fMRI: Optimizing for discrimination.

dc.contributor.authorSala Llonch, Roser
dc.contributor.authorSmith, Stephen M.
dc.contributor.authorWoolrich, Mark
dc.contributor.authorDuff, Eugene P.
dc.date.accessioned2020-05-29T15:43:10Z
dc.date.available2020-05-29T15:43:10Z
dc.date.issued2019-02-01
dc.date.updated2020-05-29T15:43:10Z
dc.description.abstractThe analysis of Functional Connectivity (FC) is a key technique of fMRI, having been used to distinguish brain states and conditions. While many approaches to calculating FC are available, there have been few assessments of their differences, making it difficult to choose approaches and compare results. Here, we assess the impact of methodological choices on discriminability, using a fully controlled dataset of continuous active states involving basic visual and motor tasks, providing robust localized FC changes. We tested a range of anatomical and functional parcellations, including the AAL atlas, parcellations derived from the Human Connectome Project and Independent Component Analysis (ICA) of many dimensionalities. We measure amplitude, covariance, correlation and regularized partial correlation under different temporal filtering choices. We evaluate features derived from these methods for discriminating states using MVPA. We find that multidimensional parcellations derived from functional data performed similarly, outperforming an anatomical atlas, with correlation and partial correlation (p<0.05, FDR). Partial correlation, with appropriate regularization, outperformed correlation. Amplitude and covariance generally discriminated less well, although gave good results with high-dimensionality ICA. We found that discriminative FC properties are frequency specific; higher frequencies performed surprisingly well under certain configurations of atlas choices and dependency measures, with ICA-based parcellations revealing greater discriminability at high frequencies compared to other parcellations. Methodological choices in FC analyses can have a profound impact on results and can be selected to optimize accuracy, interpretability, and sharing of results. This work contributes to a basis for consistent selection of approaches to estimating and analyzing FC.
dc.format.extent25 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec687648
dc.identifier.issn1065-9471
dc.identifier.pmid30259597
dc.identifier.urihttps://hdl.handle.net/2445/163113
dc.language.isoeng
dc.publisherWiley
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1002/hbm.24381
dc.relation.ispartofHuman Brain Mapping, 2019, vol. 40, num. 2, p. 407-419
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/319456/EU//DHCP
dc.relation.urihttps://doi.org/10.1002/hbm.24381
dc.rights(c) Wiley, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Biomedicina)
dc.subject.classificationCervell
dc.subject.classificationPercepció visual
dc.subject.classificationProcessament d'imatges
dc.subject.otherBrain
dc.subject.otherVisual perception
dc.subject.otherImage processing
dc.titleSpatial parcellations, spectral filtering, and connectivity measures in fMRI: Optimizing for discrimination.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
687648.pdf
Mida:
2.11 MB
Format:
Adobe Portable Document Format