El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 

An Interactive LLM-based Conversational Agent for Complex Data Analysis

dc.contributor.advisorPuig Puig, Anna
dc.contributor.advisorRodríguez Santiago, Inmaculada
dc.contributor.authorJurado González, Rubén
dc.date.accessioned2025-10-23T09:07:40Z
dc.date.issued2025-07-04
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2025, Director: Anna Puig Puig i Inmaculada Rodríguez Santiagoca
dc.description.abstractComplex multivariate datasets—characterized by complex parent-child structures and rich attributes such as hierarchies and networks—pose challenges for intuitive exploration and analysis. This work presents an interactive visualization system integrated with a conversational agent (chatbot) to support natural language interaction with such data, especially for domain experts. Users can upload datasets, issue natural language queries, manipulate interface elements (e.g., buttons, panels), and generate custom visualizations including force-directed graphs, circle-packing layouts, and tabular charts. These features enhance data interpretability and engagement. The system includes a robust NLP pipeline based on DistilBERT for intent classification, optimized through data balancing and retraining. Visualizations, rendered in real time with Plotly and D3.js in a Dash interface, support interactions such as zooming, panning, node selection, and dynamic color mapping via language commands. A Retrieval-Augmented Generation (RAG) pipeline enriches chatbot responses using contextual information from uploaded documents. The system also supports misclassification reporting to iteratively refine the NLP model. It handles large-scale hierarchical data efficiently and has been validated on examples like organizational charts and threaded discussions. Notable features include real-time GUI customization, multi-turn conversational support, and popup visualizations from selected data subsets using intuitive queries (e.g., “Show toxicity distribution”). User testing showed high satisfaction among experts, while novices noted a steeper learning curve during onboarding.ca
dc.embargo.lift2026-10-23
dc.format.extent113 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/223844
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) Rubén Jurado González, 2025
dc.rightscodi: GPL (c) Rubén Jurado González, 2025
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationBots (Programes d'ordinador)ca
dc.subject.classificationTractament del llenguatge natural (Informàtica)ca
dc.subject.classificationVisualització de la informacióca
dc.subject.classificationAgents intel·ligents (Programari)ca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationSistemes informàtics interactiusca
dc.subject.otherInternet bots (Computer software)en
dc.subject.otherNatural language processing (Computer science)en
dc.subject.otherInformation visualizationen
dc.subject.otherIntelligent agents (Computer software)en
dc.subject.otherComputer softwareen
dc.subject.otherBachelor's thesesen
dc.subject.otherInteractive computer systemsen
dc.titleAn Interactive LLM-based Conversational Agent for Complex Data Analysisca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
tfg_Jurado_González_Rubén.pdf
Mida:
8.49 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
codi.zip
Mida:
431.66 KB
Format:
ZIP file
Descripció:
Codi font