Carregant...
Fitxers
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/65849
Root finding methods: a dynamical approach
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
One of the most classical problems in Mathematics is to find the zeroes of a given function $f$, or equivalently, to find the roots of the equation $f (z) = 0$. It has been studied this problem, from the simplest cases, like the case of $f$ being a polynomial of one or several real or complex variables, to a more general setting, like the case of $f$ being just a continuous function.
Using algebraic and analytic methods it is possible to exactly solve the equation $f (x) = 0$ rarely. A part from these particular situations (like polynomials of degree less than 5) the unique approximation is to numerically find them; that is to construct root finding algorithms which allow us to find good approximations of the zeroes of $f$. The more well know root finding algorithms are defined by an iterative mechanism, and so, they can be thought and treated as dynamical systems defined in a certain space.
Descripció
Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2015, Director: Xavier Jarque i Ribera
Citació
Col·leccions
Citació
OLEA MARTÍNEZ, Javier. Root finding methods: a dynamical approach. [consulta: 14 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/65849]