Differentiable invariant manifolds of nilpotent parabolic points

dc.contributor.authorCufí Cabré, Clara
dc.contributor.authorFontich, Ernest, 1955-
dc.date.accessioned2022-02-24T09:32:57Z
dc.date.available2022-10-31T06:10:25Z
dc.date.issued2021-10
dc.date.updated2022-02-24T09:32:57Z
dc.description.abstractWe consider a map $F$ of class $C^{r}$ with a fixed point of parabolic type whose differential is not diagonalizable, and we study the existence and regularity of the invariant manifolds associated with the fixed point using the parameterization method. Concretely, we show that under suitable conditions on the coefficients of $F$, there exist invariant curves of class $C^{r}$ away from the fixed point, and that they are analytic when $F$ is analytic. The differentiability result is obtained as an application of the fiber contraction theorem. We also provide an algorithm to compute an approximation of a parameterization of the invariant curves and a normal form of the restricted dynamics of $F$ on them.
dc.format.extent38 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec720158
dc.identifier.issn1078-0947
dc.identifier.urihttps://hdl.handle.net/2445/183479
dc.language.isoeng
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.3934/dcds.2021053
dc.relation.ispartofDiscrete and Continuous Dynamical Systems-Series A, 2021, vol. 41, num. 10, p. 4667- 4704
dc.relation.urihttps://doi.org/10.3934/dcds.2021053
dc.rights(c) American Institute of Mathematical Sciences (AIMS), 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationSistemes dinàmics diferenciables
dc.subject.classificationVarietats diferenciables
dc.subject.otherDifferentiable dynamical systems
dc.subject.otherDifferentiable manifolds
dc.titleDifferentiable invariant manifolds of nilpotent parabolic points
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
720158.pdf
Mida:
237.84 KB
Format:
Adobe Portable Document Format