A few things about hyperimaginaries and stable forking

dc.contributor.advisorCasanovas Ruiz-Fornells, Enrique
dc.contributor.authorPotier, Joris
dc.contributor.otherUniversitat de Barcelona. Departament de Lògica, Història i Filosofia de la Ciència
dc.date.accessioned2016-09-29T15:27:01Z
dc.date.available2016-09-29T15:27:01Z
dc.date.issued2015-06-08
dc.date.updated2016-09-29T15:27:06Z
dc.description.abstract[eng] The core of this PhD dissertation is basically twofold : On one hand, I get some new results on the relationship between compact groups and bounded hyperimaginaries, extending a little bit the classical results of Lascar and Pillay in Hyperimaginaries And Automorphism Groups. On the other hand, I prove some new results around the so called "stable forking" property, more specifically that a simple theory T has stable forking if Teq has. Quite surprisingly, the proof is not so straigtforward.
dc.description.abstract[spa] En este texto se trata, por una parte, de la relación entre grupos compactos e hiper-imaginarios acotados, y por otra parte se prueba que una teoría T tiene la propiedad de bifurcación estable si i solo si Teq la tiene.
dc.format.extent124 p.
dc.format.mimetypeapplication/pdf
dc.identifier.tdxhttp://hdl.handle.net/10803/394029
dc.identifier.urihttps://hdl.handle.net/2445/102249
dc.language.isoeng
dc.publisherUniversitat de Barcelona
dc.rightscc-by-sa, (c) Potier,, 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/
dc.sourceTesis Doctorals - Departament - Lògica, Història i Filosofia de la Ciència
dc.subject.classificationLògica
dc.subject.classificationTopologia
dc.subject.classificationCategories (Matemàtica)
dc.subject.classificationTeoria de models
dc.subject.classificationTeoria de conjunts
dc.subject.classification
dc.subject.otherLogic
dc.subject.otherTopology
dc.subject.otherCategories (Mathematics)
dc.subject.otherModel theory
dc.subject.otherSet theory
dc.titleA few things about hyperimaginaries and stable forking
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
JORIS POTIER_THESIS.pdf
Mida:
45.05 MB
Format:
Adobe Portable Document Format