Estimating peanut and soybean photosynthetic traits using leaf spectral reflectance and advance regression models

dc.contributor.authorBuchaillot, Ma. Luisa
dc.contributor.authorSoba, David
dc.contributor.authorShu, Tianchu
dc.contributor.authorLiu, Juan
dc.contributor.authorAranjuelo, Iker
dc.contributor.authorAraus Ortega, José Luis
dc.contributor.authorRunion, G. Brett
dc.contributor.authorPrior, Stephen A.
dc.contributor.authorKefauver, Shawn Carlisle
dc.contributor.authorSanz-Saez, Alvaro
dc.date.accessioned2024-07-04T16:47:51Z
dc.date.available2024-07-04T16:47:51Z
dc.date.issued2022-03-24
dc.date.updated2024-07-04T16:47:56Z
dc.description.abstractOne proposed key strategy for increasing potential crop stability and yield centers on exploitation of genotypic variability in photosynthetic capacity through precise high-throughput phenotyping techniques. Photosynthetic parameters, such as the maximum rate of Rubisco catalyzed carboxylation (Vc,max) and maximum electron transport rate supporting RuBP regeneration (Jmax), have been identified as key targets for improvement. The primary techniques for measuring these physiological parameters are very time-consuming. However, these parameters could be estimated using rapid and non-destructive leaf spectroscopy techniques. This study compared four different advanced regression models (PLS, BR, ARDR, and LASSO) to estimate Vc,max and Jmax based on leaf reflectance spectra measured with an ASD FieldSpec4. Two leguminous species were tested under different controlled environmental conditions: (1) peanut under different water regimes at normal atmospheric conditions and (2) soybean under high [CO2] and high night temperature. Model sensitivities were assessed for each crop and treatment separately and in combination to identify strengths and weaknesses of each modeling approach. Regardless of regression model, robust predictions were achieved for Vc,max (R2 = 0.70) and Jmax (R2 = 0.50). Field spectroscopy shows promising results for estimating spatial and temporal variations in photosynthetic capacity based on leaf and canopy spectral properties.
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec729723
dc.identifier.issn0032-0935
dc.identifier.urihttps://hdl.handle.net/2445/214347
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00425-022-03867-6
dc.relation.ispartofPlanta, 2022, vol. 255, p. 1-19
dc.relation.urihttps://doi.org/10.1007/s00425-022-03867-6
dc.rightscc-by (c) Buchaillot, Ma. Luisa et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)
dc.subject.classificationAnàlisi de regressió
dc.subject.classificationEstadística bayesiana
dc.subject.classificationFotosíntesi
dc.subject.classificationSoia
dc.subject.classificationCacauet
dc.subject.otherRegression analysis
dc.subject.otherBayesian statistical decision
dc.subject.otherPhotosynthesis
dc.subject.otherSoybean
dc.subject.otherPeanuts
dc.titleEstimating peanut and soybean photosynthetic traits using leaf spectral reflectance and advance regression models
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
256734.pdf
Mida:
3.12 MB
Format:
Adobe Portable Document Format