Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier Ltd, 2017
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/163837

Exploring ozonation as treatment alternative for methiocarb and formed transformation products abatement

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Despite the high toxicity and resistance to conventional water treatments exhibited by methiocarb (MC), there are no reports regarding the degradation of this priority pesticide by means of alternative purification technologies. In this work, the removal of MC by means of ozonation was studied for the first time, employing a multi-reactor methodology and neutral pH conditions. The second-order rate constants of MC reaction with molecular ozone (O3) and formed hydroxyl radicals (OH·) were determined to be 1.7·106 and 8.2·109 M−1 s−1, respectively. During degradation experiments, direct ozone reaction was observed to effectively remove MC, but not its formed intermediates, whereas OH· could oxidize all species. The major identified TPs were methiocarb sulfoxide (MCX), methiocarb sulfoxide phenol (MCXP) and methiocarb sulfone phenol (MCNP), all of them formed through MC oxidation by O3 or OH· in combination with hydrolysis. A toxicity assessment evidenced a strong dependence on MCX concentration, even at very low values. Despite the OH· capability to degrade MC and its main metabolites, the relative resistance of TPs towards ozone attack enlarged the oxidant dosage (2.5 mg O3/mg DOC) necessary to achieve a relatively low toxicity of the medium. Even though ozonation could be a suitable technique for MC removal from water compartments, strategies aimed to further promote the indirect contribution of hydroxyl radicals during this process should be explored.

Citació

Citació

CRUZ ALCALDE, Alberto, SANS MAZÓN, Carme, ESPLUGAS VIDAL, Santiago. Exploring ozonation as treatment alternative for methiocarb and formed transformation products abatement. _Chemosphere_. 2017. Vol. 186, núm. 725-732. [consulta: 21 de gener de 2026]. ISSN: 0045-6535. [Disponible a: https://hdl.handle.net/2445/163837]

Exportar metadades

JSON - METS

Compartir registre