Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/23393

Multipower variation for Brownian semistationary processes

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In this paper we study the asymptotic behaviour of power and multipower variations of processes Y : Yt = Z t 1 g(t s) sW (ds) +Zt
In this paper we study the asymptotic behaviour of power and multipower variations of processes $Y$:\[Y_t=\int_{-\in fty}^tg(t-s)\sigma_sW(\mathrm{d}s)+Z_t,\] where $g:(0,\infty)\rightarrow\mathbb{R}$ is deterministic, $\sigma >0$ is a random process, $W$ is the stochastic Wiener measure and $Z$ is a stochastic process in the nature of a drift term. Processes of this type serve, in particular, to model data of velocity increments of a fluid in a turbulence regime with spot intermittency $\sigma$. The purpose of this paper is to determine the probabilistic limit behaviour of the (multi)power variations of $Y$ as a basis for studying properties of the intermittency process $\sigma$. Notably the processes $Y$ are in general not of the semimartingale kind and the established theory of multipower variation for semimartingales does not suffice for deriving the limit properties. As a key tool for the results, a general central limit theorem for triangular Gaussian schemes is formulated and proved. Examples and an application to the realised variance ratio are given.

Citació

Citació

BARNDORFF-NIELSEN, O. e. (ole e.), CORCUERA VALVERDE, José manuel, PODOLSKIJ, Mark. Multipower variation for Brownian semistationary processes. _Bernoulli_. 2011. Vol. 17, núm. 4, pàgs. 1159-1194. [consulta: 1 de febrer de 2026]. ISSN: 1350-7265. [Disponible a: https://hdl.handle.net/2445/23393]

Exportar metadades

JSON - METS

Compartir registre