Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver

dc.contributor.authorSatapati, Santhosh
dc.contributor.authorSunny, Nishanth E.
dc.contributor.authorKucejova, Blanka
dc.contributor.authorFu, Xiaorong
dc.contributor.authorHe, Tian Teng
dc.contributor.authorMéndez-Lucas, Andrés
dc.contributor.authorShelton, John M.
dc.contributor.authorPerales Losa, Carlos
dc.contributor.authorBrowning, Jeffrey D.
dc.contributor.authorBurgess, Shawn C.
dc.date.accessioned2021-05-13T14:14:13Z
dc.date.available2021-05-13T14:14:13Z
dc.date.issued2012-06-01
dc.date.updated2021-05-13T14:14:13Z
dc.description.abstractThe manner in which insulin resistance impinges on hepatic mitochondrial function is complex. Although liver insulin resistance is associated with respiratory dysfunction, the effect on fat oxidation remains controversial, and biosynthetic pathways that traverse mitochondria are actually increased. The tricarboxylic acid (TCA) cycle is the site of terminal fat oxidation, chief source of electrons for respiration, and a metabolic progenitor of gluconeogenesis. Therefore, we tested whether insulin resistance promotes hepatic TCA cycle flux in mice progressing to insulin resistance and fatty liver on a high-fat diet (HFD) for 32 weeks using standard biomolecular and in vivo (2)H/(13)C tracer methods. Relative mitochondrial content increased, but respiratory efficiency declined by 32 weeks of HFD. Fasting ketogenesis became unresponsive to feeding or insulin clamp, indicating blunted but constitutively active mitochondrial β-oxidation. Impaired insulin signaling was marked by elevated in vivo gluconeogenesis and anaplerotic and oxidative TCA cycle flux. The induction of TCA cycle function corresponded to the development of mitochondrial respiratory dysfunction, hepatic oxidative stress, and inflammation. Thus, the hepatic TCA cycle appears to enable mitochondrial dysfunction during insulin resistance by increasing electron deposition into an inefficient respiratory chain prone to reactive oxygen species production and by providing mitochondria-derived substrate for elevated gluconeogenesis.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec632428
dc.identifier.issn0022-2275
dc.identifier.pmid22493093
dc.identifier.urihttps://hdl.handle.net/2445/177273
dc.language.isoeng
dc.publisherAmerican Society for Biochemistry and Molecular Biology
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1194/jlr.M023382
dc.relation.ispartofJournal of Lipid Research, 2012, vol. 53, num. 6, p. 1080-1092
dc.relation.urihttps://doi.org/10.1194/jlr.M023382
dc.rights(c) American Society for Biochemistry and Molecular Biology, 2012
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciències Fisiològiques)
dc.subject.classificationÀcid cítric
dc.subject.classificationDieta
dc.subject.classificationÀcids grassos
dc.subject.classificationFetge
dc.subject.classificationResistència a la insulina
dc.subject.otherCitric acid
dc.subject.otherDiet
dc.subject.otherFatty acids
dc.subject.otherLiver
dc.subject.otherInsulin resistance
dc.titleElevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
632428.pdf
Mida:
1.33 MB
Format:
Adobe Portable Document Format