Some remarks on the abundance of stable periodic orbits inside homoclinic lobes

dc.contributor.authorSimó, Carles.
dc.contributor.authorVieiro Yanes, Arturo
dc.date.accessioned2023-02-21T18:01:05Z
dc.date.available2023-02-21T18:01:05Z
dc.date.issued2011-12-01
dc.date.updated2023-02-21T18:01:05Z
dc.description.abstractWe consider a family $F_\epsilon$ of area-preserving maps (APMs) with a hyperbolic point $H_\epsilon$ whose invariant manifolds form a figure-eight and we study the abundance of elliptic periodic orbits visiting homoclinic lobes (EPL), a domain typically dominated by chaotic behavior. To this end, we use the Chirikov separatrix map (SM) as a model of the return to a fundamental domain containing lobes. We obtain an explicit estimate, valid for families $F_\epsilon$ with central symmetry and close to an integrable limit, of the relative measure of the set of parameters $\epsilon$ for which $F_\epsilon$ has EPL trajectories. To get this estimate we look for EPL of the SM with the lowest possible period. The analytical results are complemented with quantitative numerical studies of the following families $F_\epsilon$ of APMs: - The SM family, and we compare our analytical results with the numerical estimates. - The standard map (STM) family, and we show how the results referring to the SM model apply to the EPL visiting the lobes that the invariant manifolds of the STM hyperbolic fixed point form. - The conservative Hénon map family, and we estimate the number of a particular type of symmetrical EPL related to the separatrices of the 4-periodic resonant islands. The results obtained can be seen as the quantitative analogs to those in Simó and Treschev (2008) [9], although here we deal with the a priori stable situation instead.
dc.format.extent18 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec579349
dc.identifier.issn0167-2789
dc.identifier.urihttps://hdl.handle.net/2445/193916
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.physd.2011.09.007
dc.relation.ispartofPhysica D, 2011, vol. 240, num. 24, p. 1936-1953
dc.relation.urihttps://doi.org/10.1016/j.physd.2011.09.007
dc.rights(c) Elsevier B.V., 2011
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationÒrbites
dc.subject.classificationSistemes dinàmics de baixa dimensió
dc.subject.classificationTeoria ergòdica
dc.subject.classificationCamps vectorials
dc.subject.otherOrbits
dc.subject.otherLow-dimensional dynamical systems
dc.subject.otherErgodic theory
dc.subject.otherVector fields
dc.titleSome remarks on the abundance of stable periodic orbits inside homoclinic lobes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
579349.pdf
Mida:
5.73 MB
Format:
Adobe Portable Document Format