Symmetries and fixed point stability of stochastic differential equations modeling self-organized criticality

dc.contributor.authorCorral, Álvarocat
dc.contributor.authorDíaz Guilera, Albertcat
dc.date.accessioned2011-07-07T12:53:07Z
dc.date.available2011-07-07T12:53:07Z
dc.date.issued1997
dc.description.abstractA stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.eng
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec143494
dc.identifier.issn1063-651X
dc.identifier.urihttps://hdl.handle.net/2445/18804
dc.language.isoengeng
dc.publisherThe American Physical Societyeng
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1103/PhysRevE.55.2434cat
dc.relation.ispartofPhysical Review E, 1997, vol. 55, núm. 3, p. 2434-2445
dc.relation.urihttp://dx.doi.org/10.1103/PhysRevE.55.2434
dc.rights(c) American Physical Society, 1997
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationFísica estadísticacat
dc.subject.classificationTermodinàmicacat
dc.subject.classificationSistemes no linealscat
dc.subject.classificationPropietats magnètiquescat
dc.subject.classificationEquacions d'estatcat
dc.subject.classificationRegla de les fases i equilibricat
dc.subject.classificationTransformacions de fase (Física estadística)cat
dc.subject.classificationEquacions diferencials estocàstiquescat
dc.subject.otherStatistical physicseng
dc.subject.otherThermodynamicseng
dc.subject.otherNonlinear systemseng
dc.subject.otherMagnetic propertieseng
dc.subject.otherEquations of stateeng
dc.subject.otherPhase rule and equilibriumeng
dc.subject.otherPhase transformations (Statistical physics)eng
dc.subject.otherStochastic differential equationseng
dc.titleSymmetries and fixed point stability of stochastic differential equations modeling self-organized criticalityeng
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
143494.pdf
Mida:
238.09 KB
Format:
Adobe Portable Document Format