Using deep learning and Open Street Maps to find features in aerial images

dc.contributor.advisorSeguí Mesquida, Santi
dc.contributor.advisorVitrià i Marca, Jordi
dc.contributor.authorBeltrán Segarra, Marc
dc.contributor.authorCompanys Rufián, Albert
dc.date.accessioned2019-05-20T08:15:55Z
dc.date.available2019-05-20T08:15:55Z
dc.date.issued2018-07-03
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2018, Tutor: Santi Seguí Mesquida i Jordi Vitrià i Marcaca
dc.description.abstract[en] A great amount of the interesting information captured by aerial imagery is still not being used given how labour intensive the processing and annotation of these images is. Despite this, improvements in technology and advancements in the computer vision field have made available tools and techniques that can help make this process semi-automatized. In this project we focus on the use case of extracting roads from aerial imagery. For this purpose, we will study and compare models based on image segmentation using deep learning and RoadTracer, a revolutionary model proposed recently.ca
dc.format.extent67 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/133457
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Marc Beltrán Segarra i Albert companys Rufián, 2018
dc.rightscodi: GPL (c) Marc Beltrán Segarra i Albert companys Rufián, 2018, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationServeis de geolocalització
dc.subject.classificationTreballs de fi de màster
dc.subject.classificationFotografia aèriaca
dc.subject.classificationProcessament digital d'imatgesca
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.otherMachine learning
dc.subject.otherLocation-based services
dc.subject.otherMaster's theses
dc.subject.otherAerial photographyen
dc.subject.otherDigital image processingen
dc.subject.otherNeural networks (Computer science)en
dc.titleUsing deep learning and Open Street Maps to find features in aerial imagesca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
19.45 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
672.79 KB
Format:
ZIP file
Descripció:
Codi font