Resonant Raman scattering based approaches for the quantitative assessment of nanometric ZnMgO layers in high efficiency chalcogenide solar cells

dc.contributor.authorGuc, Maxim
dc.contributor.authorHariskos, Dimitrios
dc.contributor.authorCalvo Barrio, Lorenzo
dc.contributor.authorJackson, Philip
dc.contributor.authorOliva, Florian
dc.contributor.authorPistor, Paul
dc.contributor.authorPérez Rodríguez, Alejandro
dc.contributor.authorIzquierdo Roca, Victor
dc.date.accessioned2018-11-21T18:06:28Z
dc.date.available2018-11-21T18:06:28Z
dc.date.issued2017
dc.date.updated2018-11-21T18:06:28Z
dc.description.abstractThis work reports a detailed resonant Raman scattering analysis of ZnMgO solid solution nanometric layers that are being developed for high efficiency chalcogenide solar cells. This includes layers with thicknesses below 100 nm and compositions corresponding to Zn/(Zn + Mg) content rations in the range between 0% and 30%. The vibrational characterization of the layers grown with different compositions and thicknesses has allowed deepening in the knowledge of the sensitivity of the different Raman spectral features on the characteristics of the layers, corroborating the viability of resonant Raman scattering based techniques for their non-destructive quantitative assessment. This has included a deeper analysis of different experimental approaches for the quantitative assessment of the layer thickness, based on (a) the analysis of the intensity of the ZnMgO main Raman peak; (b) the evaluation of the changes of the intensity of the main Raman peak from the subjacent layer located below the ZnMgO one; and (c) the study of the changes in the relative intensity of the first to second/third order ZnMgO peaks. In all these cases, the implications related to the presence of quantum confinement effects in the nanocrystalline layers grown with different thicknesses have been discussed and evaluated.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec678407
dc.identifier.issn2045-2322
dc.identifier.pmid28442796
dc.identifier.urihttps://hdl.handle.net/2445/126310
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41598-017-01381-4
dc.relation.ispartofScientific Reports, 2017, vol. 7, num. 7, p. 1144
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/625840/JUMPKEST
dc.relation.urihttps://doi.org/10.1038/s41598-017-01381-4
dc.rightscc-by (c) Guc, Maxim et al., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationEspectroscòpia Raman
dc.subject.classificationCèl·lules solars
dc.subject.classificationPel·lícules fines
dc.subject.otherRaman spectroscopy
dc.subject.otherSolar cells
dc.subject.otherThin films
dc.titleResonant Raman scattering based approaches for the quantitative assessment of nanometric ZnMgO layers in high efficiency chalcogenide solar cells
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
678407.pdf
Mida:
3.18 MB
Format:
Adobe Portable Document Format