Euclid: Validation of the MontePython forecasting tools

dc.contributor.authorEuclid Collaboration
dc.contributor.authorSchöneberg, Nils
dc.date.accessioned2025-07-09T09:46:43Z
dc.date.available2025-07-09T09:46:43Z
dc.date.issued2024-02-08
dc.date.updated2025-07-09T09:46:43Z
dc.description.abstractContext. The Euclid mission of the European Space Agency will perform a survey of weak lensing cosmic shear and galaxy clustering in order to constrain cosmological models and fundamental physics. Aims. We expand and adjust the mock Euclid likelihoods of the MontePython software in order to match the exact recipes used in previous Euclid Fisher matrix forecasts for several probes: weak lensing cosmic shear, photometric galaxy clustering, the crosscorrelation between the latter observables, and spectroscopic galaxy clustering. We also establish which precision settings are required when running the Einstein–Boltzmann solvers CLASS and CAMB in the context of Euclid. Methods. For the minimal cosmological model, extended to include dynamical dark energy, we perform Fisher matrix forecasts based directly on a numerical evaluation of second derivatives of the likelihood with respect to model parameters. We compare our results with those of previously validated Fisher codes using an independent method based on first derivatives of the Euclid observables. Results. We show that such MontePython forecasts agree very well with previous Fisher forecasts published by the Euclid Collaboration, and also, with new forecasts produced by the CosmicFish code, now interfaced directly with the two Einstein–Boltzmann solvers CAMB and CLASS. Moreover, to establish the validity of the Gaussian approximation, we show that the Fisher matrix marginal error contours coincide with the credible regions obtained when running Monte Carlo Markov chains with MontePython while using the exact same mock likelihoods. Conclusions. The new Euclid forecast pipelines presented here are ready for use with additional cosmological parameters, in order to explore extended cosmological models.
dc.format.extent33 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec755275
dc.identifier.issn0004-6361
dc.identifier.urihttps://hdl.handle.net/2445/222118
dc.language.isoeng
dc.publisherEDP Sciences
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1051/0004-6361/202346772
dc.relation.ispartofAstronomy & Astrophysics, 2024, vol. 682
dc.relation.urihttps://doi.org/10.1051/0004-6361/202346772
dc.rightscc-by (c) Euclid Collaboration, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))
dc.subject.classificationModels astronòmics
dc.subject.classificationCosmologia
dc.subject.classificationGalàxies
dc.subject.otherAstronomical models
dc.subject.otherCosmology
dc.subject.otherGalaxies
dc.titleEuclid: Validation of the MontePython forecasting tools
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
881785.pdf
Mida:
15.77 MB
Format:
Adobe Portable Document Format

Paquet de llicències

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
license.txt
Mida:
1.71 KB
Format:
Item-specific license agreed upon to submission
Descripció: