Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/96001

Equidistribution estimates for Fekete points on complex manifolds

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We study the equidistribution of Fekete points in a compact complex manifold. These are extremal point configurations defined through sections of powers of a positive line bundle. Their equidistribution is a known result. The novelty of our approach is that we relate them to the problem of sampling and interpolation on line bundles, which allows us to estimate the equidistribution of the Fekete points quantitatively. In particular we estimate the Kantorovich-Wasserstein distance of the Fekete points to its limiting measure. The sampling and interpolation arrays on line bundles are a subject of independent interest, and we provide necessary density conditions through the classical approach of Landau, that in this context measures the local dimension of the space of sections of the line bundle. We obtain a complete geometric characterization of sampling and interpolation arrays in the case of compact manifolds of dimension one, and we prove that there are no arrays of both sampling and interpolation in the more general setting of semipositive line bundles.

Citació

Citació

LEV, Nir, ORTEGA CERDÀ, Joaquim. Equidistribution estimates for Fekete points on complex manifolds. _Journal of the European Mathematical Society_. 2016. Vol. 18, núm. 2, pàgs. 425-464. [consulta: 24 de gener de 2026]. ISSN: 1435-9855. [Disponible a: https://hdl.handle.net/2445/96001]

Exportar metadades

JSON - METS

Compartir registre