Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/192796

Splitting of the separatrices after a Hamiltonian-Hopf bifurcation under periodic forcing

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We consider the effect of a non-autonomous periodic perturbation on a 2-dof autonomous system obtained as a truncation of the Hamiltonian-Hopf normal form. Our analysis focuses on the behaviour of the splitting of invariant 2D stable/unstable manifolds. Due to the interaction of the intrinsic angle and the periodic perturbation the splitting behaves quasi-periodically on two angles. We analyse the different changes of the dominant harmonic in the splitting functions when the unfolding parameter of the bifurcation varies. We describe how the dominant harmonics depend on the quotients of the continuous fraction expansion (CFE) of the periodic forcing frequency. We have considered different frequencies including quadratic irrationals, frequencies having CFE with bounded quotients and frequencies with unbounded quotients. The methodology combines analytical and numeric methods with heuristic estimates of the role of the non-dominant harmonics. The approach is general enough to systematically deal with all these frequency types. Together, this allows us to get a detailed description of the asymptotic splitting behaviour for the concrete perturbation considered.

Citació

Citació

FONTICH, Ernest, SIMÓ, Carles, VIEIRO YANES, Arturo. Splitting of the separatrices after a Hamiltonian-Hopf bifurcation under periodic forcing. _Nonlinearity_. 2019. Vol. 32, núm. 4, pàgs. 1440-1493. [consulta: 23 de gener de 2026]. ISSN: 0951-7715. [Disponible a: https://hdl.handle.net/2445/192796]

Exportar metadades

JSON - METS

Compartir registre