Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Tényi, Á. et al., 2016
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/68878

ChainRank, a chain prioritisation method for contextualisation of biological networks

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Advances in high throughput technologies and growth of biomedical knowledge have contributed to an exponential increase in associative data. These data can be represented in the form of complex networks of biological associations, which are suitable for systems analyses. However, these networks usually lack both, context specificity in time and space as well as the distinctive borders, which are usually assigned in the classical pathway view of molecular events (e.g. signal transduction). This complexity and high interconnectedness call for automated techniques that can identify smaller targeted subnetworks specific to a given research context (e.g. a disease scenario).

Citació

Citació

TÉNYI, Ákos, ATAURI CARULLA, Ramón de, GOMEZ CABRERO, David, CANO FRANCO, Isaac, CLARKE, Kim, FALCIANI, Francesco, CASCANTE I SERRATOSA, Marta, ROCA TORRENT, Josep, MAIER, Dieter. ChainRank, a chain prioritisation method for contextualisation of biological networks. _Bmc Bioinformatics_. 2016. Vol. 17, núm. 1, pàgs. 1-17. [consulta: 24 de gener de 2026]. ISSN: 1471-2105. [Disponible a: https://hdl.handle.net/2445/68878]

Exportar metadades

JSON - METS

Compartir registre