Applications of quantum machine learning in cybersecurity

dc.contributor.advisorGarcia Saez, Artur
dc.contributor.authorHuanay de Dios, Álvaro Ari
dc.date.accessioned2023-02-22T14:15:13Z
dc.date.available2023-02-22T14:15:13Z
dc.date.issued2022-07
dc.descriptionMàster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2021-2022. Tutor: Artur Garcia Saezca
dc.description.abstractAdversarial attacks on discriminative algorithms are highly used in the field of cybersecurity (e.g. on email-filtering or malware bypassing). As the automationof tasks is since now used more than ever, all current state-of the art attack and defence methods are frequently exploited by some sort machine learning action. This project aims to build a pipeline to bypass a discriminator (ResNet-18) using a Probabilistic Generative Model (Restricted Boltzmann Machine) by generating images as seemingly as possible to real hand-written numbers (MNIST dataset) trained by two different methods; classical machine learning and quantum-enhanced machine learning (classical machine learning with a final boost of quantum annealing) using D-Wave´s quantum computers. Quantum computing is proposed as an alternative to minimize more the free energy of the model at the end of the training. Computation of the loss function is proven to be easier with a quantum annealing machine rather than with fully classical methods. A better accuracy is expected by the quantum-enhanced model as well as a faster training. Quality of the images generated by each technique is compared and possible applications in the field of cybersecurity using PGMs are proposed besides of discussing physical requirementsca
dc.format.extent24 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/193932
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Huanay, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Ciència i Tecnologia Quàntiques / Quantum Science and Technology
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationSeguretat informàtica
dc.subject.classificationOrdinadors quàntics
dc.subject.classificationTreballs de fi de màster
dc.subject.otherMachine learning
dc.subject.otherComputer security
dc.subject.otherQuantum computers
dc.subject.otherMaster's theses
dc.titleApplications of quantum machine learning in cybersecurityeng
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
HUANAY-DE-DIOS-ALVARO-MT.pdf
Mida:
1.8 MB
Format:
Adobe Portable Document Format
Descripció: