Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

(c) Physica Verlag, 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/180174

Marginality and convexity in partition function form games

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In this paper an order on the set of embedded coalitions is studied in detail. This allows us to define new notions of superaddivity and convexity of games in partition function form which are compared to other proposals in the literature. The main results are two characterizations of convexity. The first one uses non-decreasing contributions to coalitions of increasing size and can thus be considered parallel to the classic result for cooperative games without externalities. The second one is based on the standard convexity of associated games without externalities that we define using a partition of the player set. Using the later result, we can conclude that some of the generalizations of the Shapley value to games in partition function form lie within the cores of specific classic games when the original game is convex.

Citació

Citació

ALONSO-MEIJIDE, José mª, ÁLVAREZ-MOZOS, Mikel, FIESTRAS-JANEIRO, M. gloria, JIMÉNEZ-LOSADA, Andrés. Marginality and convexity in partition function form games. _Mathematical Methods of Operations Research_. 2021. Vol. 94, núm. 99-121. [consulta: 24 de gener de 2026]. ISSN: 1432-2994. [Disponible a: https://hdl.handle.net/2445/180174]

Exportar metadades

JSON - METS

Compartir registre