Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration

dc.contributor.authorPérez González, Carlos
dc.contributor.authorCeada Torres, Gerardo
dc.contributor.authorGreco, Francesco
dc.contributor.authorMatejčić, Marija
dc.contributor.authorBatlle, Eduard
dc.contributor.authorGómez González, Manuel
dc.contributor.authorCastro, Natalia
dc.contributor.authorMenendez, Anghara
dc.contributor.authorKale, Sohan
dc.contributor.authorKrndija, Denis
dc.contributor.authorClark, Andrew G.
dc.contributor.authorGannavarapu, Venkata Ram
dc.contributor.authorÁlvarez Varela, Adrián
dc.contributor.authorRoca-Cusachs Soulere, Pere
dc.contributor.authorVignjevic, Danijela Matic
dc.contributor.authorArroyo, Marino
dc.contributor.authorTrepat Guixer, Xavier
dc.date.accessioned2021-12-23T17:18:53Z
dc.date.available2021-12-23T17:18:53Z
dc.date.issued2021-06-21
dc.date.updated2021-12-23T17:18:53Z
dc.description.abstractIntestinal organoids capture essential features of the intestinal epithelium such as crypt folding, cellular compartmentalization and collective movements. Each of these processes and their coordination require patterned forces that are at present unknown. Here we map three-dimensional cellular forces in mouse intestinal organoids grown on soft hydrogels. We show that these organoids exhibit a non-monotonic stress distribution that defines mechanical and functional compartments. The stem cell compartment pushes the extracellular matrix and folds through apical constriction, whereas the transit amplifying zone pulls the extracellular matrix and elongates through basal constriction. The size of the stem cell compartment depends on the extracellular-matrix stiffness and endogenous cellular forces. Computational modelling reveals that crypt shape and force distribution rely on cell surface tensions following cortical actomyosin density. Finally, cells are pulled out of the crypt along a gradient of increasing tension. Our study unveils how patterned forces enable compartmentalization, folding and collective migration in the intestinal epithelium.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec713190
dc.identifier.idimarina6523085
dc.identifier.issn1465-7392
dc.identifier.urihttps://hdl.handle.net/2445/182016
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1038/s41556-021-00699-6
dc.relation.ispartofNature Cell Biology, 2021, vol. 23, num. 7, p. 745-757
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/797621/EU//MECHANOIDS
dc.relation.urihttps://doi.org/10.1038/s41556-021-00699-6
dc.rights(c) Pérez González, Carlos et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Biomedicina)
dc.subject.classificationIntestins
dc.subject.classificationMigració cel·lular
dc.subject.otherIntestines
dc.subject.otherCell migration
dc.titleMechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
713190.pdf
Mida:
9.76 MB
Format:
Adobe Portable Document Format