Optomechanical Crystals for Spatial Sensing of Submicron Sized Particles

dc.contributor.authorNavarro Urrios, Daniel
dc.contributor.authorKang, E.
dc.contributor.authorXiao, P.
dc.contributor.authorColombano, Martín F.
dc.contributor.authorArregui, Guillermo
dc.contributor.authorGraczykowski, B.
dc.contributor.authorCapuj, Néstor E.
dc.contributor.authorSledzinska, M.
dc.contributor.authorSotomayor Torres, Clivia M.
dc.contributor.authorFytas, G.
dc.date.accessioned2022-05-20T17:35:26Z
dc.date.available2022-05-20T17:35:26Z
dc.date.issued2021-04-09
dc.date.updated2022-05-20T17:35:26Z
dc.description.abstractOptomechanical crystal cavities (OMC) have rich perspectives for detecting and indirectly analysing biological particles, such as proteins, bacteria and viruses. In this work we demonstrate the working principle of OMCs operating under ambient conditions as a sensor of submicrometer particles by optically monitoring the frequency shift of thermally activated mechanical modes. The resonator has been specifcally designed so that the cavity region supports a particular family of low modal-volume mechanical modes, commonly known as -pinch modes-. These involve the oscillation of only a couple of adjacent cavity cells that are relatively insensitive to perturbations in other parts of the resonator. The eigenfrequency of these modes decreases as the deformation is localized closer to the centre of the resonator. Thus, by identifying specifc modes that undergo a frequency shift that amply exceeds the mechanical linewidth, it is possible to infer if there are particles deposited on the resonator, how many are there and their approximate position within the cavity region. OMCs have rich perspectives for detecting and indirectly analysing biological particles, such as proteins, viruses and bacteria.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec711888
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/2445/185919
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41598-021-87558-4
dc.relation.ispartofScientific Reports, 2021, vol. 11, num. 1, p. 7829
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/694977/EU//Smartphon
dc.relation.urihttps://doi.org/10.1038/s41598-021-87558-4
dc.rightscc-by (c) Navarro Urrios, Daniel et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationCristalls
dc.subject.classificationEnginyeria mecànica
dc.subject.classificationFotònica
dc.subject.otherCrystals
dc.subject.otherMechanical engineering
dc.subject.otherPhotonics
dc.titleOptomechanical Crystals for Spatial Sensing of Submicron Sized Particles
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
711888.pdf
Mida:
1.7 MB
Format:
Adobe Portable Document Format