State diversity in different neural network structures

dc.contributor.advisorDíaz Guilera, Albert
dc.contributor.authorMartínez Mateu, Pau
dc.date.accessioned2025-09-10T14:25:42Z
dc.date.available2025-09-10T14:25:42Z
dc.date.issued2025-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutor: Albert Díaz Guileraca
dc.description.abstractThe objective of this work is to study the capability to replicate different states of some different topological configurations named as feed forward, sunrise and circular with different inter-module connections. To achieve this, the Izhikevich mathematical model has been used for excitatory regular spiking neurons. A sort of simulations has been done with different values of the noise intensity for a total of 7 different configurations, in order to analyze the evolution of the functional complexity ϕFC and to find the value of the maximum with an adjustment. Finally, the maximum values have been compared and it has been identified that the best configuration to replicate different states of the neural network is the feed forward with all the inter-modular connections in the same direction, showing the important effect of directionality.ca
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/223105
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Martínez, 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationAnàlisi numèricacat
dc.subject.classificationSistemes complexoscat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherNumerical analysiseng
dc.subject.otherComplex systemseng
dc.subject.otherBachelor's theseseng
dc.titleState diversity in different neural network structureseng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFG-Martinez-Mateu-Pau.pdf
Mida:
420.83 KB
Format:
Adobe Portable Document Format
Descripció: