Contrasting Metallic (Rh0) and Carbidic (2D-Mo2C MXene) Surfaces in Olefin Hydrogenation Provides Insights on the Origin of the Pairwise Hydrogen Addition

dc.contributor.authorMeng, Ling
dc.contributor.authorPokochueva, Ekaterina
dc.contributor.authorChen, Zixuan
dc.contributor.authorFedorov, Alexey
dc.contributor.authorViñes Solana, Francesc
dc.contributor.authorIllas i Riera, Francesc
dc.contributor.authorKoptyug, Igor V.
dc.date.accessioned2025-07-24T12:44:35Z
dc.date.available2025-07-24T12:44:35Z
dc.date.issued2024-08-06
dc.date.updated2025-07-24T12:44:35Z
dc.description.abstractKinetic studies are vital for gathering mechanistic insights into heterogeneously catalyzed hydrogenation of unsaturated organic compounds (olefins), where the Horiuti–Polanyi mechanism is ubiquitous on metal catalysts. While this mechanism envisions nonpairwise H2 addition due to the rapid scrambling of surface hydride (H*) species, a pairwise H2 addition is experimentally encountered, rationalized here based on density functional theory (DFT) simulations for the ethene (C2H4) hydrogenation catalyzed by two-dimensional (2D) MXene Mo2C(0001) surface and compared to Rh(111) surface. Results show that ethyl (C2H5*) hydrogenation is the rate-determining step (RDS) on Mo2C(0001), yet C2H5* formation is the RDS on Rh(111), which features a higher reaction rate and contribution from pairwise H2 addition compared to 2D-Mo2C(0001). This qualitatively agrees with the experimental results for propene hydrogenation with parahydrogen over 2D-Mo2C1–x MXene and Rh/TiO2. However, DFT results imply that pairwise selectivity should be negligible owing to the facile H* diffusion on both surfaces, not affected by H* nor C2H4* coverages. DFT results also rule out the Eley–Rideal mechanism appreciably contributing to pairwise addition. The measurable contribution of the pairwise hydrogenation pathway operating concurrently with the dominant nonpairwise one is proposed to be due to the dynamic site blocking at higher adsorbate coverages or another mechanism that would drastically limit the diffusion of H* adatoms.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec755301
dc.identifier.issn2155-5435
dc.identifier.urihttps://hdl.handle.net/2445/222561
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/https://doi.org/10.1021/acscatal.4c02534
dc.relation.ispartofACS Catalysis, 2024, vol. 14, num.16, p. 12500-12511
dc.relation.urihttps://doi.org/https://doi.org/10.1021/acscatal.4c02534
dc.rightscc-by (c) Meng, Ling, et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationAdsorció
dc.subject.classificationHidrogenació
dc.subject.classificationMXens
dc.subject.otherAdsorption
dc.subject.otherHydrogenation
dc.subject.otherMXenes
dc.titleContrasting Metallic (Rh0) and Carbidic (2D-Mo2C MXene) Surfaces in Olefin Hydrogenation Provides Insights on the Origin of the Pairwise Hydrogen Addition
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
881857.pdf
Mida:
3.96 MB
Format:
Adobe Portable Document Format