Automated clinical coding of medical notes into the SNOMED CT Medical terminology structuring system
| dc.contributor.advisor | Sumoy Van Dyck, Lauro | |
| dc.contributor.advisor | Igual Muñoz, Laura | |
| dc.contributor.author | Cantón Simó, Sergi | |
| dc.date.accessioned | 2024-09-30T09:03:41Z | |
| dc.date.available | 2024-09-30T09:03:41Z | |
| dc.date.issued | 2024-09-01 | |
| dc.description | Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Lauro Sumoy Van Dyck i Laura Igual Muñoz | ca |
| dc.description.abstract | Automated clinical coding is the computational process of annotating healthcare free-text data by detecting relevant medical concepts and linking them to a structured medical terminology system. One of the most significant of these systems is SNOMED CT, which contains a vast array of specific medical terms, each identified by a unique ID. This work focuses on the automatic clinical coding of medical notes within the SNOMED CT system. The study presents a comprehensive review of state-of-the-art methods in this field, followed by a detailed examination of two specific approaches, each tested and their results discussed. The first method employs a classical dictionary-based approach, while the second utilizes a deep learning BERT-based model. Additionally, the work introduces a novel contribution to one of these methods and demonstrates a practical application where automatic clinical coding facilitates the extraction of specific numerical values from medical discharge summaries. | ca |
| dc.format.extent | 46 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/215452 | |
| dc.language.iso | eng | ca |
| dc.rights | cc-by-nc-nd (c) Sergi Cantón Simó, 2023 | |
| dc.rights | codi: GPL (c) Sergi Cantón Simó, 2023 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
| dc.rights.uri | http://www.gnu.org/licenses/gpl-3.0.ca.html | * |
| dc.source | Màster Oficial - Fonaments de la Ciència de Dades | |
| dc.subject.classification | Llenguatge mèdic | |
| dc.subject.classification | Glossaris | |
| dc.subject.classification | Informàtica mèdica | |
| dc.subject.classification | Treballs de fi de màster | |
| dc.subject.classification | Aprenentatge automàtic | ca |
| dc.subject.other | Medical language | |
| dc.subject.other | Glossaries | |
| dc.subject.other | Medical informatics | |
| dc.subject.other | Master's thesis | |
| dc.subject.other | Machine learning | en |
| dc.title | Automated clinical coding of medical notes into the SNOMED CT Medical terminology structuring system | ca |
| dc.type | info:eu-repo/semantics/masterThesis | ca |
Fitxers
Paquet original
1 - 2 de 2
Carregant...
- Nom:
- tfm_canton_simo_sergi.pdf
- Mida:
- 897.03 KB
- Format:
- Adobe Portable Document Format
- Descripció:
- Memòria
Carregant...
- Nom:
- SNOMED-CT-AutomatedClinicalCoding-main.zip
- Mida:
- 999.52 KB
- Format:
- ZIP file
- Descripció:
- Codi font