Universality for fluctuations of counting statistics of random normal matrices

dc.contributor.authorMarzo Sánchez, Jordi
dc.contributor.authorMolag, Leslie
dc.contributor.authorOrtega Cerdà, Joaquim
dc.date.accessioned2026-02-20T09:10:09Z
dc.date.available2026-02-20T09:10:09Z
dc.date.issued2026-02-16
dc.date.updated2026-02-20T09:10:09Z
dc.description.abstractWe consider the fluctuations of the number of eigenvalues of $n \times n$ random normal matrices depending on a potential $Q$ in a given set $A$. The eigenvalues of random normal matrices are known to form a determinantal point process, and are known to accumulate on a compact set called the droplet under mild conditions on $Q$. When $A$ is a Borel set strictly inside the droplet, we show that the variance of the number of eigenvalues $N_A^{(n)}$ in $A$ has a limiting behavior given by $$ \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \operatorname{Var} N_A^{(n)}=\frac{1}{2 \pi \sqrt{\pi}} \int_{\partial_* A} \sqrt{\Delta Q(z)} d \mathcal{H}^1(z), $$ where $\partial_* A$ is the measure theoretic boundary of $A$, $d H^1(z)$ denotes the one-dimensional Hausdorff measure, and $\Delta=\partial_z \overline{\partial_z}$. We also consider the case where $A$ is a microscopic dilation of the droplet and fully generalize a result by Akemann, Byun, and Ebke for arbitrary potentials. In this result $d \boldsymbol{H}^1(z)$ is replaced by the harmonic measure at $\infty$ associated with the exterior of the droplet. This second result is proved by strengthening results due to Hedenmalm-Wennman and Ameur-Cronvall on the asymptotic behavior of the associated correlation kernel near the droplet boundary.
dc.format.extent35 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec765865
dc.identifier.issn0024-6107
dc.identifier.urihttps://hdl.handle.net/2445/227113
dc.language.isoeng
dc.publisherLondon Mathematical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1112/jlms.70462
dc.relation.ispartofJournal of the London Mathematical Society-Second Series, 2026, vol. 113, num.2
dc.relation.urihttps://doi.org/10.1112/jlms.70462
dc.rightscc by (c) Jordi Marzo et al., 2026
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.classificationProcessos puntuals
dc.subject.classificationExpansions asimptòtiques
dc.subject.classificationMatrius aleatòries
dc.subject.classificationFuncions de variables complexes
dc.subject.otherPoint processes
dc.subject.otherAsymptotic expansions
dc.subject.otherRandom matrices
dc.subject.otherFunctions of complex variables
dc.titleUniversality for fluctuations of counting statistics of random normal matrices
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
919008.pdf
Mida:
482.36 KB
Format:
Adobe Portable Document Format