Universality for fluctuations of counting statistics of random normal matrices
| dc.contributor.author | Marzo Sánchez, Jordi | |
| dc.contributor.author | Molag, Leslie | |
| dc.contributor.author | Ortega Cerdà, Joaquim | |
| dc.date.accessioned | 2026-02-20T09:10:09Z | |
| dc.date.available | 2026-02-20T09:10:09Z | |
| dc.date.issued | 2026-02-16 | |
| dc.date.updated | 2026-02-20T09:10:09Z | |
| dc.description.abstract | We consider the fluctuations of the number of eigenvalues of $n \times n$ random normal matrices depending on a potential $Q$ in a given set $A$. The eigenvalues of random normal matrices are known to form a determinantal point process, and are known to accumulate on a compact set called the droplet under mild conditions on $Q$. When $A$ is a Borel set strictly inside the droplet, we show that the variance of the number of eigenvalues $N_A^{(n)}$ in $A$ has a limiting behavior given by $$ \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \operatorname{Var} N_A^{(n)}=\frac{1}{2 \pi \sqrt{\pi}} \int_{\partial_* A} \sqrt{\Delta Q(z)} d \mathcal{H}^1(z), $$ where $\partial_* A$ is the measure theoretic boundary of $A$, $d H^1(z)$ denotes the one-dimensional Hausdorff measure, and $\Delta=\partial_z \overline{\partial_z}$. We also consider the case where $A$ is a microscopic dilation of the droplet and fully generalize a result by Akemann, Byun, and Ebke for arbitrary potentials. In this result $d \boldsymbol{H}^1(z)$ is replaced by the harmonic measure at $\infty$ associated with the exterior of the droplet. This second result is proved by strengthening results due to Hedenmalm-Wennman and Ameur-Cronvall on the asymptotic behavior of the associated correlation kernel near the droplet boundary. | |
| dc.format.extent | 35 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 765865 | |
| dc.identifier.issn | 0024-6107 | |
| dc.identifier.uri | https://hdl.handle.net/2445/227113 | |
| dc.language.iso | eng | |
| dc.publisher | London Mathematical Society | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1112/jlms.70462 | |
| dc.relation.ispartof | Journal of the London Mathematical Society-Second Series, 2026, vol. 113, num.2 | |
| dc.relation.uri | https://doi.org/10.1112/jlms.70462 | |
| dc.rights | cc by (c) Jordi Marzo et al., 2026 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.classification | Processos puntuals | |
| dc.subject.classification | Expansions asimptòtiques | |
| dc.subject.classification | Matrius aleatòries | |
| dc.subject.classification | Funcions de variables complexes | |
| dc.subject.other | Point processes | |
| dc.subject.other | Asymptotic expansions | |
| dc.subject.other | Random matrices | |
| dc.subject.other | Functions of complex variables | |
| dc.title | Universality for fluctuations of counting statistics of random normal matrices | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1