Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Cuscó, 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/214968

Novel Machine Learning Tools for data treatment in STM Break-Junction Technique

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

L'estudi de les propietats electròniques de molècules individuals s'ha convertit en una realitat gràcies a l'ús de tècniques avançades. Aquestes tècniques, anomenades Break-Junction, permeten la creació d’unions unimoleculars posant en contacte una molècula individual entre dos elèctrodes amb una precisió sub-nanomètrica. Aquest estudi se centra en la tècnica de l’Scanning Tunneling Microscopy Break-Junction (STM-BJ), que permet la formació de milers d’unions unimoleculars apropant i retraient repetidament dos elèctrodes (punta contra superfície), generant corbes de corrent que relacionen la conductància amb el desplaçament. Per comprendre millor aquest tipus de mesures, s'utilitzen comunament histogrames 1D i 2D els quals acumulen milers de corbes per caracteritzar les evolucions d’aquestes unions. Tradicionalment, aquests histogrames s'han construït utilitzant criteris de selecció decidits pels investigadors, cosa que sovint pot conduir a interpretacions esbiaixades i molt limitades en la identificació de patrons complexos en la racionalització de resultats. Ell nostre estudi proposa noves metodologies per classificar corbes de corrent d’unions moleculars, proporcionant uns detalls que podrien passar desapercebuts per l'anàlisi humà. Aquestes metodologies es basen en algoritmes d'Aprenentatge Automàtic, un subdomini de la Intel·ligència Artificial, que permeten als ordinadors entendre i identificar patrons en grans conjunts de dades i fer prediccions. Així doncs, s'ha utilitzat l'Aprenentatge No Supervisat, que organitza dades no classificades en grups basats en variables pre-definides. Per tal d’obtenir el millor resultat, s'han provat diversos tipus d'algoritmes, amb diferents nivells de classificació, de mes a menys flexibles. En aquest projecte, hem desenvolupat un programa d'Aprenentatge Automàtic basat en llenguatge Python amb l'objectiu de revolucionar la interpretació dels conjunts de dades d’unions unimoleculars. El nostre avanç millorarà la racionalització de la fenomenologia unimolecular, facilitant una comprensió més precisa de les dades experimentals.

Descripció

Treballs Finals de Grau de Química, Facultat de Química, Universitat de Barcelona, Any: 2024, Tutors: Albert Cortijos i Aragonès, José Mauricio Regalado Aguilar

Citació

Citació

CUSCÓ ROVIRA, Sara. Novel Machine Learning Tools for data treatment in STM Break-Junction Technique. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/214968]

Exportar metadades

JSON - METS

Compartir registre