El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Abad, 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/223223

Quantum Generative Adversarial Networks: Improving Dynamics Simulation with an Ancilla Qubit

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Simulating complex quantum systems remains a critical challenge, as conventional quantum techniques– such as those based on the Suzuki–Trotter decomposition—often result in deep circuits that demand substantial computational resources. Quantum Generative Adversarial Networks (QGANs) offer a promising alternative by learning the time evolution of target Hamiltonian using significantly fewer gates. However, standard QGAN architectures commonly suffer from unstable convergence and learning plateaus in the loss landscape, which hinder training and prevent the generator from achieving high-fidelity solutions. To address these limitations, we propose augmenting the generator with an ancilla qubit, expanding the learning space, and providing additional degrees of freedom that enable training to progress when the model becomes trapped in certain regions of the loss landscape. In this work, we investigate the effect of incorporating an ancilla under various connectivity topologies and at different stages of training, in order to perturb the optimization landscape and aid the generator overcome problematic training cases Simulation results demonstrate that ancilla-assisted QGANs successfully escape learning plateaus and other non-convergent behaviours, particularly when the ancilla’s connectivity links distant regions of the ansatz. Notably, the optimized fidelity overall improves when the ancilla is introduced mid-way through the training.

Descripció

Màster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2024-2025. Tutors:Some Sankar Bhattacharya, Ayaka Usui

Citació

Citació

ABAD LÓPEZ, Guillermo. Quantum Generative Adversarial Networks: Improving Dynamics Simulation with an Ancilla Qubit. [consulta: 3 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/223223]

Exportar metadades

JSON - METS

Compartir registre