El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/195681

A Cognitively Inspired Clustering Approach for Critique-Based Recommenders

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The purpose of recommender systems is to support humans in the purchasing decision-making process. Decision-making is a human activity based on cognitive information. In the field of recommender systems, critiquing has been widely applied as an effective approach for obtaining users' feedback on recommended products. In the last decade, there have been a large number of proposals in the field of critique-based recommenders. These proposals mainly differ in two aspects: in the source of data and in how it is mined to provide the user with recommendations. To date, no approach has mined data using an adaptive clustering algorithm to increase the recommender's performance. In this paper, we describe how we added a clustering process to a critique-based recommender, thereby adapting the recommendation process and how we defined a cognitive user preference model based on the preferences (i.e., defined by critiques) received by the user. We have developed several proposals based on clustering, whose acronyms are MCP, CUM, CUM-I, and HGR-CUM-I. We compare our proposals with two well-known state-of-the-art approaches: incremental critiquing (IC) and history-guided recommendation (HGR). The results of our experiments showed that using clustering in a critique-based recommender leads to an improvement in their recommendation efficiency, since all the proposals outperform the baseline IC algorithm. Moreover, the performance of the best proposal, HGR-CUM-I, is significantly superior to both the IC and HGR algorithms. Our results indicate that introducing clustering into the critique-based recommender is an appealing option since it enhances overall efficiency, especially with a large data set.

Citació

Citació

CONTRERAS, David, SALAMÓ LLORENTE, Maria. A Cognitively Inspired Clustering Approach for Critique-Based Recommenders. _Cognitive Computation_. 2020. Vol. 12, núm. 428-441. [consulta: 7 de gener de 2026]. ISSN: 1866-9956. [Disponible a: https://hdl.handle.net/2445/195681]

Exportar metadades

JSON - METS

Compartir registre