Unsupervised segmentation using CNNs applied to food analysis

dc.contributor.advisorRadeva, Petia
dc.contributor.authorBrufau Vidal, Montserrat
dc.contributor.authorFerrer Campo, Àlex
dc.contributor.authorGavalas, Markos
dc.date.accessioned2019-06-04T08:01:58Z
dc.date.available2019-06-04T08:01:58Z
dc.date.issued2018-07-03
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2018, Tutor: Petia Radevaca
dc.description.abstract[en] In the recent times, there have been numerous papers on deep segmentation algorithms for vision tasks. The main challenge of these tasks is to obtain sufficient supervised pixel-level labels for the ground truth. The main goal of this project is to explore if Convolutional Neural Networks can be used for unsupervised segmentation. We follow a novel unsupervised deep architecture, capable of facing this challenge, called the W-net and we test it on food images. The main idea of this model is to concatenate two fully convolutional networks together into an autoencoder. The encoding layer produces a k-way pixelwise prediction, and both the reconstruction error of the autoencoder as well as the error from the decoder are jointly minimized during training. We search for the best architecture for this network and we compare the results for this unsupervised network with supervised results from a well-known network.ca
dc.format.extent60 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/134460
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Montserrat Brufau Vidal, Àlex Ferrer Campo i Markos Gavalas, 2018
dc.rightscodi: GPL (c) Montserrat Brufau Vidal, Àlex Ferrer Campo i Markos Gavalas, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationAlgorismes computacionals
dc.subject.classificationVisió per ordinador
dc.subject.classificationTreballs de fi de màster
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationAlimentsca
dc.subject.otherComputer algorithms
dc.subject.otherComputer vision
dc.subject.otherMaster's theses
dc.subject.otherNeural networks (Computer science)
dc.subject.otherMachine learning
dc.subject.otherFooden
dc.titleUnsupervised segmentation using CNNs applied to food analysisca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
Brufau_Ferrer_Gavalas_TFM.pdf
Mida:
13.37 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
DATA-SCIENCE-BOWL-2018-master.zip
Mida:
80.36 MB
Format:
ZIP file
Descripció:
Codi font