Quantum Mechanics and Path Integrals: Quadratic Actions

dc.contributor.advisorTaron i Roca, Josep
dc.contributor.authorAragonès Fontboté, Marc
dc.date.accessioned2022-07-25T07:59:33Z
dc.date.available2022-07-25T07:59:33Z
dc.date.issued2022-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2022, Tutor: Josep Tarón Rocaca
dc.description.abstractThis work aims to calculate the Feynman propagator of several physical systems governed by quadratic actions by means of the Path Integral approach. Consequently, once the propagator is known for the case of a harmonic potential, a system of coupled oscillators will be studied. Finally, it will be possible to determine the time evolution of a Gaussian wave function when its width is initially modified, as well as the effect induced by a periodic external forceca
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/188022
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Aragonès, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationTeoria quànticacat
dc.subject.classificationIntegrals de camícat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherQuantum theoryeng
dc.subject.otherPath integralseng
dc.subject.otherBachelor's theseseng
dc.titleQuantum Mechanics and Path Integrals: Quadratic Actionseng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
ARAGONÈS FONTBOTÉ MARC_6057521_assignsubmission_file_TFG-Aragonès-Fontboté-Marc.pdf
Mida:
389.02 KB
Format:
Adobe Portable Document Format
Descripció: