Classification of linear skew-products of the complex plane and an affine route to fractalization

dc.contributor.authorFagella Rabionet, Núria
dc.contributor.authorJorba i Monte, Àngel
dc.contributor.authorJorba-Cuscó, Marc
dc.contributor.authorTatjer i Montaña, Joan Carles
dc.date.accessioned2020-05-18T09:10:12Z
dc.date.available2020-07-31T05:10:29Z
dc.date.issued2019-07
dc.date.updated2020-05-18T09:10:13Z
dc.description.abstractLinear skew products of the complex plane, \left.\begin{array}{l} \theta \mapsto \theta+\omega \\ z \mapsto a(\theta) z \end{array}\right\} where $\theta \in \mathrm{T}, z \in \mathbb{C}, \frac{\omega}{2 \pi}$ is irrational, and $\theta \mapsto a(\theta) \in \mathbb{C} \backslash\{0\}$ is a smooth map, appear naturally when linearizing dynamics around an invariant curve of a quasi-periodically forced complex map. In this paper we study linear and topological equivalence classes of such maps through conjugacies which preserve the skewed structure, relating them to the Lyapunov exponent and the winding number of $\theta \mapsto a(\theta) .$ We analyze the transition between these classes by considering one parameter families of linear skew products. Finally, we show that, under suitable conditions, an affine variation of the maps above has a non-reducible invariant curve that undergoes a fractalization process when the parameter goes to a critical value. This phenomenon of fractalization of invariant curves is known to happen in nonlinear skew products, but it is remarkable that it also occurs in simple systems as the ones we present.
dc.format.extent21 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec688097
dc.identifier.issn1078-0947
dc.identifier.urihttps://hdl.handle.net/2445/160863
dc.language.isoeng
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.3934/dcds.2019153
dc.relation.ispartofDiscrete and Continuous Dynamical Systems-Series A, 2019, vol. 39, num. 7, p. 3767-3787
dc.relation.urihttps://doi.org/10.3934/dcds.2019153
dc.rights(c) American Institute of Mathematical Sciences (AIMS), 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationSistemes dinàmics diferenciables
dc.subject.classificationFuncions de variables complexes
dc.subject.otherDifferentiable dynamical systems
dc.subject.otherFunctions of complex variables
dc.titleClassification of linear skew-products of the complex plane and an affine route to fractalization
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
688097.pdf
Mida:
1.62 MB
Format:
Adobe Portable Document Format