Cohesion and coordination effects on transition metal surface energies

dc.contributor.authorRuvireta Jurado, Judit
dc.contributor.authorVega Dominguez, Lorena
dc.contributor.authorViñes Solana, Francesc
dc.date.accessioned2020-06-18T07:49:14Z
dc.date.available2020-06-18T07:49:14Z
dc.date.issued2017-05-26
dc.date.updated2020-06-18T07:49:15Z
dc.description.abstractHere we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to bond-cutting model, considering as well the square root dependency of the bond strength on the CN. Further, generalized coordination numbers (CN) ̅ are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec682273
dc.identifier.issn0039-6028
dc.identifier.urihttps://hdl.handle.net/2445/166205
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.susc.2017.05.013
dc.relation.ispartofSurface Science, 2017, vol. 664, p. 45-49
dc.relation.urihttps://doi.org/10.1016/j.susc.2017.05.013
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationMetalls de transició
dc.subject.classificationCatàlisi heterogènia
dc.subject.otherTransition metals
dc.subject.otherHeterogeneus catalysis
dc.titleCohesion and coordination effects on transition metal surface energies
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
682273.pdf
Mida:
1.92 MB
Format:
Adobe Portable Document Format