Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Primer Renato Calleja et al., 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/220218

Accurate computations up to break-down of quasi-periodic attractors in the dissipative spin-orbit problem

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We consider a Celestial Mechanics model: the spin–orbit problem with a dissipative tidal torque, which is a singular perturbation of a conservative system. The goal of this paper is to show that it is possible to maintain the accuracy and reliability of the computation of quasi-periodic attractors for parameter values extremely close to the breakdown and, therefore, it is possible to obtain information on the breakdown mechanism of these quasi-periodic attractors. The method uses at the same time numerical and rigorous improvements to provide (i) a very accurate computation of the time-1 map of the spin–orbit problem (which reduces the dimensionality of the problem); (ii) a very efficient KAM method for maps which computes the attractor and its tangent spaces (by quadratically convergent, low storage requirements, and low operation count); (iii) explicit algorithms backed by a rigorous a posteriori KAM theorem, which establishes that if the algorithm is successful and produces a small residual, then there is a true solution nearby; and (iv) guaranteed algorithms to reach arbitrarily close to the border of existence as long as there are enough computer resources. As a by-product of the accuracy that we maintain till breakdown, we study several scale-invariant observables of the tori used in the renormalization group of infinite-dimensional spaces.

Citació

Citació

LLAVE, Ramon de la, CELLETTI, Alessandra, GIMENO I ALQUÉZAR, Joan, CALLEJA, Renato. Accurate computations up to break-down of quasi-periodic attractors in the dissipative spin-orbit problem. _Journal of Nonlinear Science_. 2023. Vol. 34. [consulta: 23 de gener de 2026]. ISSN: 0938-8974. [Disponible a: https://hdl.handle.net/2445/220218]

Exportar metadades

JSON - METS

Compartir registre