Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Academic Press, 2016
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/102303

Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We study expected Riesz s-energies and linear statistics of some determinantal processes on the sphere $\mathbb{S}^{d}$. In particular, we compute the expected Riesz and logarithmic energies of the determinantal processes given by the reproducing kernel of the space of spherical harmonics. This kernel defines the so called harmonic ensemble on $\mathbb{S}^{d}$. With these computations we improve previous estimates for the discrete minimal energy of configurations of points in the sphere. We prove a comparison result for Riesz 2-energies of points defined through determinantal point processes associated with isotropic kernels. As a corollary we get that the Riesz 2-energy of the harmonic ensemble is optimal among ensembles defined by isotropic kernels with the same trace. Finally, we study the variance of smooth and rough linear statistics for the harmonic ensemble and compare the results with the variance for the spherical ensemble (in $\mathbb{S}^{d}$).

Citació

Citació

BELTRÁN, Carlos, MARZO SÁNCHEZ, Jordi, ORTEGA CERDÀ, Joaquim. Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres. _Journal of Complexity_. 2016. Vol. 37, núm. 76-109. [consulta: 9 de gener de 2026]. ISSN: 0885-064X. [Disponible a: https://hdl.handle.net/2445/102303]

Exportar metadades

JSON - METS

Compartir registre