Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/185907
Facing the Label-Switching problem when using generic inference platforms for crowd annotation models
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] In this Master Thesis we study some classical approaches for crowd annotation models such as the pooled multinomial model or the Dawid-Skene models. These models try to learn from the crowd, which is not required to be composed of experts. In particular, the problem of label aggregation that we deal with can be seen as a probabilistic graphical model. We propose an algorithm that aims to solve the problem of label-switching for generic inference platforms such as STAN without any previous intervention to the optimization/sampling method. We also study its performance by means of the Kullback-Leibler divergence, where we see that the results are better after applying our proposed correction.
Descripció
Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2020-2021. Tutor: Jerónimo Hernández González i Jesús Cerquides Bueno
Matèries (anglès)
Citació
Citació
PADRÓS ZAMORA, Àlex. Facing the Label-Switching problem when using generic inference platforms for crowd annotation models. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/185907]