On the Design of an ECOC-Compliant Genetic Algorithm

dc.contributor.authorBautista Martín, Miguel Ángel
dc.contributor.authorEscalera Guerrero, Sergio
dc.contributor.authorPujol Vila, Oriol
dc.contributor.authorBaró i Solé, Xavier
dc.date.accessioned2018-01-18T14:00:28Z
dc.date.available2018-01-18T14:00:28Z
dc.date.issued2014-08-01
dc.date.updated2018-01-18T14:00:28Z
dc.description.abstractGenetic Algorithms (GA) have been previously applied to Error-Correcting Output Codes (ECOC) in state-of-the-art works in order to find a suitable coding matrix. Nevertheless, none of the presented techniques directly take into account the properties of the ECOC matrix. As a result the considered search space is unnecessarily large. In this paper, a novel Genetic strategy to optimize the ECOC coding step is presented. This novel strategy redefines the usual crossover and mutation operators in order to take into account the theoretical properties of the ECOC framework. Thus, it reduces the search space and lets the algorithm to converge faster. In addition, a novel operator that is able to enlarge the code in a smart way is introduced. The novel methodology is tested on several UCI datasets and four challenging computer vision problems. Furthermore, the analysis of the results done in terms of performance, code length and number of Support Vectors shows that the optimization process is able to find very efficient codes, in terms of the trade-off between classification performance and the number of classifiers. Finally, classification performance per dichotomizer results shows that the novel proposal is able to obtain similar or even better results while defining a more compact number of dichotomies and SVs compared to state-of-the-art approaches.
dc.format.extent20 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec626763
dc.identifier.issn0031-3203
dc.identifier.urihttps://hdl.handle.net/2445/119122
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.patcog.2013.06.019
dc.relation.ispartofPattern Recognition, 2014, vol. 47, num. 2, p. 865-884
dc.relation.urihttps://doi.org/10.1016/j.patcog.2013.06.019
dc.rights(c) Elsevier Ltd, 2014
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAlgorismes genètics
dc.subject.otherGenetic algorithms
dc.titleOn the Design of an ECOC-Compliant Genetic Algorithm
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
626763.pdf
Mida:
1.75 MB
Format:
Adobe Portable Document Format