Enhancing the detection of low-energy M dwarf flares: wavelet-based denoising of CHEOPS data

dc.contributor.authorPoyatos, Julien
dc.contributor.authorFors Aldrich, Octavi
dc.contributor.authorGómez Cama, José María
dc.contributor.authorRibas Canudas, Ignasi
dc.date.accessioned2025-11-06T17:44:39Z
dc.date.available2025-11-06T17:44:39Z
dc.date.issued2024-12-24
dc.date.updated2025-11-06T17:44:39Z
dc.description.abstractStellar flares are powerful bursts of electromagnetic radiation triggered by magnetic reconnection in the chromosphere of stars, occurring frequently and intensely on active M dwarfs. While missions like TESS and Kepler have studied regular and super-flares, their detection of flares with energies below 10^30 erg remains incomplete. Extending flare studies to include these low-energy events could enhance flare formation models and provide insight into their impacts on exoplanetary atmospheres. This study investigates CHEOPS's capacity to detect low-energy flares in M dwarf light curves. Using CHEOPS's high photometric precision and observing cadence, along with a tailored wavelet-based denoising algorithm, we aim to improve detection completeness and refine flare statistics for low-energy events. We conducted a flare injection and recovery process to optimise denoising parameters, applied it to CHEOPS light curves to maximise detection rates, and used a flare breakdown algorithm to analyse complex structures. Our analysis recovered 349 flares with energies ranging from 2.2×10^26 to 8.1×10^30 erg across 63 M dwarfs, with ∼40% exhibiting complex, multi-peaked structures. The denoising algorithm improved flare recovery by ∼34%, though it marginally extended the lower boundary of detectable energies. For the full sample, the power-law index α was 1.92±0.07, but a log-normal distribution fit better, suggesting multiple flare formation scenarios. While CHEOPS's observing mode is not ideal for large-scale surveys, it captures weaker flares than TESS or Kepler, expanding the observed energy range. Wavelet-based denoising enhances low-energy event recovery, enabling exploration of the micro-flaring regime. Expanding low-energy flare observations could refine flare generation models and improve the understanding of their role in star-planet interactions.
dc.format.extent29 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec752854
dc.identifier.issn0004-6361
dc.identifier.urihttps://hdl.handle.net/2445/224170
dc.language.isoeng
dc.publisherEDP Sciences
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1051/0004-6361/202453517
dc.relation.ispartofAstronomy & Astrophysics, 2024
dc.relation.urihttps://doi.org/10.1051/0004-6361/202453517
dc.rights(c) The European Southern Observatory (ESO), 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationEnergia
dc.subject.classificationDetectors
dc.subject.classificationEstels
dc.subject.otherEnergy
dc.subject.otherDetectors
dc.subject.otherStars
dc.titleEnhancing the detection of low-energy M dwarf flares: wavelet-based denoising of CHEOPS data
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
874039.pdf
Mida:
2.46 MB
Format:
Adobe Portable Document Format