Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/194135

Generic regularity of free boundaries for the obstacle problem

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The goal of this paper is to establish generic regularity of free boundaries for the obstacle problem in $\mathbb{R}^n$. By classical results of Caffarelli, the free boundary is $C^{\infty}$ outside a set of singular points. Explicit examples show that the singular set could be in general $(n-1)$-dimensional - that is, as large as the regular set. Our main result establishes that, generically, the singular set has zero $\mathcal{H}^{n-4}$ measure (in particular, it has codimension 3 inside the free boundary). In particular, for $n \leq 4$, the free boundary is generically a $C^{\infty}$ manifold. This solves a conjecture of Schaeffer (dating back to 1974 ) on the generic regularity of free boundaries in dimensions $n \leq 4$

Citació

Citació

FIGALLI, Alessio, ROS, Xavier, SERRA MONTOLÍ, Joaquim. Generic regularity of free boundaries for the obstacle problem. _Publications mathématiques de l'IHÉS_. 2020. Vol. 132, núm. 1, pàgs. 181-292. [consulta: 22 de gener de 2026]. ISSN: 0073-8301. [Disponible a: https://hdl.handle.net/2445/194135]

Exportar metadades

JSON - METS

Compartir registre