Leaving the Dark ages with AMIGA

dc.contributor.authorManrique Oliva, Alberto
dc.contributor.authorSalvador Solé, Eduard
dc.contributor.authorJuan Rovira, Enric
dc.contributor.authorHatziminaoglou, Evanthia
dc.contributor.authorRozas, José María
dc.contributor.authorSagristà, Antoni
dc.contributor.authorCasteels, Kevin R. V
dc.contributor.authorBruzual, Gustavo
dc.contributor.authorMagris, Gladis
dc.date.accessioned2015-05-28T12:26:46Z
dc.date.available2015-05-28T12:26:46Z
dc.date.issued2015-01-06
dc.date.updated2015-05-28T12:26:52Z
dc.description.abstractWe present an Analytic Model of Intergalactic-medium and GAlaxy (AMIGA) evolution since the dark ages. AMIGA is in the spirit of the popular semi-analytic models of galaxy formation, although it does not use halo merger trees but interpolates halo properties in grids that are progressively built. This strategy is less memory-demanding and allows one to start modeling at sufficiently high redshifts and low halo masses to have trivial boundary conditions. The number of free parameters is minimized by making a causal connection between physical processes usually treated as independent of each other, which leads to more reliable predictions. However, the strongest points of AMIGA are the following: (1) the inclusion of molecular cooling and metal-poor, population III (Pop III) stars with the most dramatic feedback and (2) accurate follow up of the temperature and volume filling factor of neutral, singly ionized, and doubly ionized regions, taking into account the distinct halo mass functions in those environments. We find the following general results. Massive Pop III stars determine the intergalactic medium metallicity and temperature, and the growth of spheroids and disks is self-regulated by that of massive black holes (MBHs) developed from the remnants of those stars. However, the properties of normal galaxies and active galactic nuclei appear to be quite insensitive to Pop III star properties due to the much higher yield of ordinary stars compared to Pop III stars and the dramatic growth of MBHs when normal galaxies begin to develop, which cause the memory loss of the initial conditions.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec646087
dc.identifier.issn0067-0049
dc.identifier.urihttps://hdl.handle.net/2445/65672
dc.language.isoeng
dc.publisherInstitute of Physics (IOP)
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1088/0067-0049/216/1/13
dc.relation.ispartofAstrophysical Journal Supplement Series, 2015, vol. 216, num. 1, p. 1-17
dc.relation.urihttp://dx.doi.org/10.1088/0067-0049/216/1/13
dc.rights(c) American Astronomical Society, 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)
dc.subject.classificationMatèria fosca (Astronomia)
dc.subject.classificationEvolució de les galàxies
dc.subject.classificationGalàxies
dc.subject.classificationFormació de les galàxies
dc.subject.otherDark matter (Astronomy)
dc.subject.otherGalaxies evolution
dc.subject.otherGalaxies
dc.subject.otherGalaxy formation
dc.titleLeaving the Dark ages with AMIGA
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
646087.pdf
Mida:
762.75 KB
Format:
Adobe Portable Document Format