Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/193871
Dynamics of 4 $D$ symplectic maps near a double resonance
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We study the dynamics of a family of $4 D$ symplectic mappings near a doubly resonant elliptic fixed point. We derive and discuss algebraic properties of the resonances required for the analysis of a Takens type normal form. In particular, we propose a classification of the double resonances adapted to this problem, including cases of both strong and weak resonances. Around a weak double resonance (a junction of two resonances of two different orders, both being larger than 4) the dynamics can be described in terms of a simple (in general non-integrable) Hamiltonian model. The non-integrability of the normal form is a consequence of the splitting of the invariant manifolds associated with a normally hyperbolic invariant cylinder. We use a $4 D$ generalisation of the standard map in order to illustrate the difference between a truncated normal form and a full $4 D$ symplectic map. We evaluate numerically the volume of a $4 D$ parallelotope defined by 4 vectors tangent to the stable and unstable manifolds respectively. In good agreement with the general theory this volume is exponentially small with respect to a small parameter and we derive an empirical asymptotic formula which suggests amazing similarity to its $2 D$ analog. Different numerical studies point out that double resonances play a key role to understand Arnold diffusion. This paper has to be seen, also, as a first step in this direction.
Matèries (anglès)
Citació
Citació
GELFREICH, Vassili, SIMÓ, Carles., VIEIRO YANES, Arturo. Dynamics of 4 $D$ symplectic maps near a double resonance. _Physica D_. 2013. Vol. 243, núm. 1, pàgs. 92-110. [consulta: 21 de gener de 2026]. ISSN: 0167-2789. [Disponible a: https://hdl.handle.net/2445/193871]