Comparison of the AQO and the QAOA for the vertex coloring problem

dc.contributor.advisorEstarellas, Marta P.
dc.contributor.advisorRiu Vicente, Jordi
dc.contributor.advisorGarrido Beltrán, Lluís
dc.contributor.authorVidal Marcos, Eric
dc.date.accessioned2023-09-12T13:17:52Z
dc.date.available2023-09-12T13:17:52Z
dc.date.issued2023-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2023, Tutors: Marta P. Estarellas, Jordi Riu, Lluís Garridoca
dc.description.abstractWe benchmark the time resources needed to execute the adiabatic quantum optimization (AQO), and to run the Quantum Approximate Optimization Algorithm (QAOA), for the vertex coloring problem. This is done via a numerical simulation of 20 Erd˝os-R´eny random graphs for different cases ranging from 8 to 21 qubits. With this comparison, we explore two of the most important algorithms of the analog and gate-based quantum computing paradigms, respectively. We apply the canonical implementation for both algorithms, so their initial Hamiltonian is the same, the one with the typical sum of Pauli-X matrices. In this line, we consider linear scheduling time for the AQO. For final adiabatic time T = 100 ns, the AQO achieves an overlap with the degenerate solutions over 0.9 in all cases. Meanwhile, the QAOA using the Powell classical optimizer, 5 layers and thousands of iterations has an overlap around 0.5 for the 8 qubits case and below 0.25 for the other cases. So, our results for the given task and idealized conditions indicate that the AQO significantly outperforms the QAOA in terms of time and success probabilityca
dc.format.extent6 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/201868
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Vidal, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationAlgorismes d'optimització quànticacat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherQuantum optimization algorithmseng
dc.subject.otherBachelor's theseseng
dc.titleComparison of the AQO and the QAOA for the vertex coloring problemeng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
VIDAL MARCOS ERIC_7934081.pdf
Mida:
752.35 KB
Format:
Adobe Portable Document Format
Descripció: