A data-driven approach for tight-binding parametrization

dc.contributor.advisorGarcia, Jose H.
dc.contributor.advisorCostache, Marius V.
dc.contributor.authorBuch Palasi, Josep
dc.date.accessioned2023-07-20T07:38:59Z
dc.date.available2023-07-20T07:38:59Z
dc.date.issued2023-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2023, Tutors: Jose H. Garcia, Marius Costacheca
dc.description.abstractTo determine how the Hamiltonian of a system manifests in experimental observation is, in general, a highly complex task. In certain systems, the Hamiltonian can be inferenced via symmetry analysis, and the problem reduces to determine a finite set of parameters, which is typically done by fitting through experiment or more complete numerical simulations. Artificial neural networks are a tool that allows to perform this fitting in a model agnostic way, as long as the input is provided in a standardized manner. These networks have the added benefit that they can handle and suppress noisy inputs. In this work, we investigate the efficiency of artificial neural networks to determine the hopping and on-site energies of a graphene Hamiltonian based on a noisy dataset of energies within the Brillouin zone. We have designed a standard to submit the input and optimize the network, ensuring that the minimal error is below 5%.ca
dc.format.extent6 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/200982
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Buch, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationSistemes hamiltonianscat
dc.subject.classificationGrafècat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherHamiltonian systemseng
dc.subject.otherGrapheneeng
dc.subject.otherBachelor's theseseng
dc.titleA data-driven approach for tight-binding parametrizationeng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
BUCH PALASÍ JOSEP_7934168.pdf
Mida:
7.73 MB
Format:
Adobe Portable Document Format
Descripció: