Optimisation of a Machine Learning algorithm applied to detection of cancer-associated fibroblasts

dc.contributor.advisorGavara i Casas, Núria
dc.contributor.authorNosàs Pomares, Marc
dc.date.accessioned2021-10-28T11:55:22Z
dc.date.available2021-10-28T11:55:22Z
dc.date.issued2021-07
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2021, Tutora: Núria Gavara Casasca
dc.description.abstractThe activation of certain cells, such as fibroblasts, with the appearance of cancer has been studied and established. In order to accelerate and cheapen breast cancer diagnosis the optimisation of machine learning algorithms can be a powerful tool. Using two different data sets we studied the performance of different machine learning algorithms. We also studied the relevance of the different studied parameters, which could lead to some relevant biomedical conclusions. Further, we discuss the results obtained and discuss key aspects for improving the analysis of such experiments, as well as future directions for the use of Machine Learning in research against cancerca
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/180893
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Nosàs, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationFibroblastcat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherMachine learningeng
dc.subject.otherFibroblasteng
dc.subject.otherBachelor's theseseng
dc.titleOptimisation of a Machine Learning algorithm applied to detection of cancer-associated fibroblastseng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
NOSÁS POMARES MARC_4253553_assignsubmission_file_TFG-Nosas-Pomares-Marc.pdf
Mida:
198.08 KB
Format:
Adobe Portable Document Format
Descripció: