Instrumental drift removal in GC-MS data for breath analysis: the short-term and long term temporal validation of putative biomarkers for COPD

dc.contributor.authorRodríguez-Pérez, Raquel
dc.contributor.authorCortés Giràldez, Roldàn
dc.contributor.authorGuamán Novillo, Ana Verónica
dc.contributor.authorPardo Martínez, Antonio
dc.contributor.authorTorralba, Yolanda
dc.contributor.authorGómez, Federico Pablo
dc.contributor.authorRoca Torrent, Josep
dc.contributor.authorBarberà i Mir, Joan Albert
dc.contributor.authorCascante i Serratosa, Marta
dc.contributor.authorMarco Colás, Santiago
dc.date.accessioned2018-01-30T09:22:38Z
dc.date.available2019-01-02T06:10:27Z
dc.date.issued2018-01-02
dc.date.updated2018-01-30T09:22:38Z
dc.description.abstractBreath analysis holds the promise of a non-invasive technique for the diagnosis of diverse respiratory conditions including COPD and lung cancer. Breath contains small metabolites that may be putative biomarkers of these conditions. However, the discovery of reliable biomarkers is a considerable challenge in the presence of both clinical and instrumental confounding factors. Among the latter, instrumental time drifts are highly relevant, as since question the short and long-term validity of predictive models. In this work we present a methodology to counter instrumental drifts using information from interleaved blanks for a case study of GC-MS data from breath samples. The proposed method includes feature filtering, and additive, multiplicative and multivariate drift corrections, the latter being based on Component Correction. Biomarker discovery was based on Genetic Algorithms in a filter configuration using Fisher´s ratio computed in the Partial Least Squares - Discriminant Analysis subspace as a figure of merit. Using our protocol, we have been able to find nine peaks that provide a statistically significant Area under the ROC Curve (AUC) of 0.75 for COPD discrimination. The method developed has been successfully validated using blind samples in short-term temporal validation. However, in the attempt to use this model for patient screening six months later was not successful. This negative result highlights the importance of increasing validation rigour when reporting biomarker discovery results
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec675379
dc.identifier.issn1752-7155
dc.identifier.pmid29292699
dc.identifier.urihttps://hdl.handle.net/2445/119396
dc.language.isoeng
dc.publisherInstitute of Physics (IOP)
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1088/1752-7163/aaa492
dc.relation.ispartofJournal of Breath Research, 2018
dc.relation.urihttps://doi.org/10.1088/1752-7163/aaa492
dc.rights(c) Institute of Physics (IOP), 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationMarcadors bioquímics
dc.subject.classificationRespiració
dc.subject.classificationQuimiometria
dc.subject.otherBiochemical markers
dc.subject.otherRespiration
dc.subject.otherChemometrics
dc.titleInstrumental drift removal in GC-MS data for breath analysis: the short-term and long term temporal validation of putative biomarkers for COPD
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
675379.pdf
Mida:
1.41 MB
Format:
Adobe Portable Document Format