Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc by-nc-nd (c) Habib Ullah Abdul Parveen, 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/202067

Fermat’s Last Theorem on totally real fields

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] Fermat's Last Theorem states the equation $$ a^n+b^n+c^n=0 $$ has only trivial solutions, i.e $a b c=0$, for $n>2$ and $a, b, c$ integers. The idea of the proof is to attach the Frey Curve $$ E_{a^p, b^p, c^p}: y^2=x\left(x-a^p\right)\left(x+b^p\right), $$ of course we assume $a, b, c$ are coprime integers with $a \equiv-1 \bmod 4$ and $2 \mid b$. The conductor of this curve is $$ N_{a^p, b^p, c^p}=\prod_{\ell \mid a b c, \ell \text { prime }} \ell . $$ The curve is semistable and so modular by Wile's Theorem, since the conductor is of the form $2 N$ for some odd integer $N$, we can apply Ribet's Theorem to show there is a weight 2 newform $g$ of level 2 such that $\bar{\rho}_g \cong$ of level 2. The first section is devoted to introduce the concepts needed to understand in more extense this proof. So, Galois representations, modular forms and Elliptics are introduced and some results stated. At the end, a more detailed proof is given. In the second section we consider solutions over some real quadratic feilds $K$. We show a non-trivial solution in $K$ gives rise to a non-trivial solution.

Descripció

Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2022-2023. Director: Luis Victor Dieulefait

Citació

Citació

ABDUL PARVEEN, Habib ullah. Fermat’s Last Theorem on totally real fields. [consulta: 9 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/202067]

Exportar metadades

JSON - METS

Compartir registre