Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Borja Sánchez López, 2018
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/129823

Multinomial logistic regression and stochastic natural gradient descent

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] Function optimization is a widely faced problem nowadays. Its interest, in particular, lies in every learning algorithm in AI, whose achievements are measured by a Loss-Function. On one hand, Multinomial Logistic Regression is a commonly applied model to engage and simplify the problem of predicting a categorical distributed variable which depends on a set of distinct categorical distributed variables. On the other hand, Gradient Descent allows us to reach local extrema of a smooth function. Moreover, large datasets force the use of online optimization. Improving the convergence speed and reducing the computational cost of gradient based online learning algorithms will automatically translate into a significant enhancement on many machine learning processes. In this text, we present a Stochastic Gradient Descent algorithm variant, specifically designed for Multinomial Logistic Regression learning problems by taking advantage of the geometry and the intrinsic metric of the space. We compare it to current most advanced stochastic algorithms, and we provide the favorable experimental results obtained.

Descripció

Treballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2018, Director: Jesús Cerquides Bueno

Citació

Citació

SÁNCHEZ LÓPEZ, Borja. Multinomial logistic regression and stochastic natural gradient descent. [consulta: 24 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/129823]

Exportar metadades

JSON - METS

Compartir registre