Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Jaime Leonardo Sánchez Salazar, 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/215424

Analyzing Brand Perception In LLMs

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

This thesis investigates brand perception in different Large Language Models (LLMs), focusing on three brands: Apple, Samsung, and Huawei. We first established an understanding of brand perception and the construction of psychometrically sound tests. Leveraging this foundation, we defined four metrics across two dimensions, sentiment and preference, to facilitate a comprehensive analysis. In the sentiment dimension, we observed that the Gemma LLM exhibited consistent bias across all brands, whereas ChatGPT3.5 and ChatGPT4 displayed similar behavior for Apple and Samsung, with notable differences for Huawei. In the preference dimension, all studied LLMs demonstrated transitivity consistency, consistently preferring Apple over Samsung and Samsung over Huawei. Our findings highlight the potential for extensive analysis using the defined metrics, limited here by time constraints. We suggest several avenues for future research, including expanding the range of brands and LLMs analyzed, improving the question bank through collaboration with psychologists, and incorporating varied question connotations and mask questions to enrich the study’s depth. This study provides a methodological framework for assessing brand perception in LLMs, with implications for broader applications beyond the specific brands and models examined.

Descripció

Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Oriol Pujol Vila i Santi Seguí Mesquida

Citació

Citació

SÁNCHEZ SALAZAR, Jaime leonardo. Analyzing Brand Perception In LLMs. [consulta: 14 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/215424]

Exportar metadades

JSON - METS

Compartir registre