Surgery on Herman rings of the complex standard family

dc.contributor.authorGeyer, Lukas
dc.contributor.authorFagella Rabionet, Núria
dc.date.accessioned2020-06-05T06:53:21Z
dc.date.available2020-06-05T06:53:21Z
dc.date.issued2003-04
dc.date.updated2020-06-05T06:53:21Z
dc.description.abstractWe consider the standard family (or Arnold family) of circle maps given by f_{\alpha, \beta}(x)=x + \alpha + \beta \sin(x) \pmod{2\pi}, for x,\alpha\in [0,2\pi), \beta \in (0,1) and its complexification F_{\alpha,\beta}(z)=z e^{i\alpha} \exp [\frac12\beta(z-\frac{1}{z})]. If f_{\alpha,\beta} is analytically linearizable, there is a Herman ring around the unit circle in the dynamical plane of F_{\alpha,\beta}. Given an irrational rotation number \theta, the parameters (\alpha,\beta) such that f_{\alpha, \beta} has rotation number \theta form a curve T_\theta in the parameter plane. Using quasi-conformal surgery of the simplest type, we show that if \theta is a Brjuno number, the curve T_\theta can be parametrized real-analytically by the modulus of the Herman ring, from \beta=0 up to a point (\alpha_0,\beta_0) with \beta_0 \leq 1, for which the Herman ring collapses. Using a result of Herman and a construction in I. N. Baker and P. Domínguez (Complex Variables37 (1998), 67-98) we show that for a certain set of angles \theta \in \mathcal{B} \setminus \mathcal{H}, the point \beta_0 is strictly less than 1 and, moreover, the boundary of the Herman rings with the corresponding rotation number have two connected components which are quasi-circles, and do not contain any critical point. For rotation numbers of constant type, the boundary consists of two quasi-circles, each containing one of the two critical points of F_{\alpha, \beta}.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec501828
dc.identifier.issn0143-3857
dc.identifier.urihttps://hdl.handle.net/2445/164372
dc.language.isoeng
dc.publisherCambridge University Press
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1017/S0143385702001323
dc.relation.ispartofErgodic Theory and Dynamical Systems, 2003, vol. 23, num. 2, p. 493-508
dc.relation.urihttps://doi.org/10.1017/S0143385702001323
dc.rights(c) Cambridge University Press, 2003
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationSistemes dinàmics de baixa dimensió
dc.subject.classificationSistemes dinàmics complexos
dc.subject.otherLow-dimensional dynamical systems
dc.subject.otherComplex dynamical systems
dc.titleSurgery on Herman rings of the complex standard family
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
501828.pdf
Mida:
206.15 KB
Format:
Adobe Portable Document Format