Towards Global Explanations for Credit Risk Scoring

dc.contributor.authorUnceta, Irene
dc.contributor.authorNin, Jordi
dc.contributor.authorPujol Vila, Oriol
dc.date.accessioned2019-03-14T08:17:59Z
dc.date.available2019-03-14T08:17:59Z
dc.date.issued2018-11-23
dc.description.abstractIn this paper we propose a method to obtain global explanations for trained black-box classifiers by sampling their decision function to learn alternative interpretable models. The envisaged approach provides a unified solution to approximate non-linear decision boundaries with simpler classifiers while retaining the original classification accuracy. We use a private residential mortgage default dataset as a use case to illustrate the feasibility of this approach to ensure the decomposability of attributes during pre-processing.ca
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/130337
dc.language.isoengca
dc.publisherNeural Information Processing Systems Foundationca
dc.relation.ispartofComunicació a: NIPS 2018 Workshop on Challenges and Opportunities for AI in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy, Montréal, Canada. December 7th, 2018
dc.rights(c) Unceta et al., 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.sourceComunicacions a congressos (Matemàtiques i Informàtica)
dc.subject.classificationRisc de crèdit
dc.subject.classificationHipoteques
dc.subject.otherCredit risk
dc.subject.otherMortgages
dc.titleTowards Global Explanations for Credit Risk Scoringca
dc.typeinfo:eu-repo/semantics/conferenceObjectca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
UncetaNIPS18.pdf
Mida:
1.68 MB
Format:
Adobe Portable Document Format