El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 

ProGAN per a la generació de ressonància magnètica de mama

dc.contributor.advisorDíaz, Oliver
dc.contributor.authorArranz Sánchez, Carlos
dc.date.accessioned2022-11-22T10:36:25Z
dc.date.available2022-11-22T10:36:25Z
dc.date.issued2022-06-12
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Oliver Díazca
dc.description.abstract[en] Currently, multiple machine learning models have been implemented to assist radiology staff in the decision-making process during the analysis of medical images for cancerous lesions, both benign and malignant. Despite this, such models mostly cannot be trained with sufficient images, due to the ethical and legal complications in obtaining the images. For this purpose, the objective of this study has been defined as the implementation of a deep learning model system, more specifically a Progressively Growing GAN, by means of which two-dimensional medical images of breast MRIs can be generated from a set of other two-dimensional medical images that were provided by the Consorci Corporació Sanitària Parc Taulí. Despite the lack of radiological knowledge and computational capacity, the results of the model can be seen as satisfactory, because the structure of the breasts is preserved, together with an approximation of the breast tissues. However, if these images are intended to be used in another project, the model should be trained on a machine with higher computational capacity by which the model can be trained for a longer time.ca
dc.format.extent62 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/191026
dc.language.isocatca
dc.rightsmemòria: cc-nc-nd (c) Carlos Arranz Sánchez, 2022
dc.rightscodi: GPL (c) Carlos Arranz Sánchez, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationImatges mèdiquesca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationImatges per ressonància magnèticaca
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.otherMachine learningen
dc.subject.otherImaging systems in medicineen
dc.subject.otherComputer softwareen
dc.subject.otherMagnetic resonance imagingen
dc.subject.otherNeural networks (Computer science)en
dc.subject.otherBachelor's thesesen
dc.titleProGAN per a la generació de ressonància magnètica de mamaca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi.zip
Mida:
34.43 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfg_carlos_arranz_sanchez.pdf
Mida:
1.92 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria